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Abstract—Automatically identifying plants from images is a
hot research topic due to its importance in production and
science popularization. This process attempts to automatically
identify the name of a plant with a known taxon from a given
image. The majority of existing studies on automatic plant
identification focus on identifying plants with a single organ,
such as flower, leaf, or fruits. Plant identification using a single
organ is not sufficiently reliable because different plants many
have similar organs. To overcome this problem, this paper is
devoted to automatically identifying plants by combining multiple
organs of plants. Specifically, we propose a multi-column deep
convolutional neural networks (MCDCNN) model to combine
multiple organs for efficient plant identification. Extensive ex-
periments demonstrate the effectiveness of our model, and the
plant identification performance is greatly improved.

I. INTRODUCTION

Plant identification consists of assigning a specimen plant
with a known taxon. This process has evolved over hundreds
of years but is a tedious task even for professional botanists.
As shown in Fig. 1, it is not an easy task to identify the
plants in these images. To narrow the botanical taxonomic
gap, it is meaningful to automatically identify images of
plants. Automatic plant identification has a wide variety of
applications. For example, useful smartphone apps can be
developed to identify photos of plants using an automatic plant
identification algorithm for science popularization [1][2]. It
can also help professional botanists to identify plants in the
field during scientific research.

Automatic plant identification has attracted increasingly
more attention in recent years with the rapid development of
computer vision. Many research works have been conduct-
ed on automatically identifying plants [3][4][1]. Despite the
progress achieved in this field, the performance of these works
is far from satisfactory due to the challenge of this task and
lack of robustness to easily confusable plants.

In early works, researchers primarily applied local features
for image representation. For example, Sziics et al. [3] used
the SIFT (scale-invariant feature transform) [5] as the feature
extractor on the dense grid and applied PCA (principal compo-
nent analysis) [6] to reduce the dimension of the feature vector
from 128 to 80. Then, the BoW (bag-of-words) [7] and GMM
(Gaussian mixture model)[8] models were applied to describe
the image. For the classification algorithm, the C-SVC with
the RBF kernel was applied. However, the performance of
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Saponaria officinalis L.

Fig. 1. The leaf and flower organs of three plants. Plant A and plant B have
similar flowers but dissimilar leaves; plant B and plant C have dissimilar
flowers but similar leaves.

these types of methods is unsatisfactory because of the limited
discriminative description ability of low-level features. Kumar
et al. [1] extracted curvature-based shape features from leaf
images. Then, the nearest neighbor method was used for iden-
tification. Although this method achieved better performance,
this solution heavily relies on the specifically selected set of
handcraft features. Therefore, it may suffer from over-fitting
and dataset bias problems [9][4].

Recently, DCNNs (deep convolutional neural networks)
have been applied and achieved state-of-the-art performance
in many image identification applications, such as ImageNet
classification [10], hand-writing number classification [11],
and face recognition [12]. Lee et al. [4] proposed training
deep convolution neural networks to identify plants. Moreover,
de-convolutional networks were employed to visualize the
learning features for a better visual understanding of which
features are important during leaf identification. Although this
method outperforms other traditional methods, note that the
dataset that they used is quite small and contains only 44
different plant species [4]. In addition, the current methods
for plant identification using DCNNs were primarily focused
on identifying a specimen plant from a single organ, e.g.,
flowers, leafs, or fruits, independently. The performance of
plant identification using a single organ is unsatisfactory
because a single organ cannot provide sufficient information
for identification in some cases. As shown in Fig. 1, the
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flowers of plant A and plant B are very similar, and thus,
discriminating plant A from plant B by only using flowers
is difficult. In other words, identifying plants using only a
single organ may suffer from a noise problem; therefore, easily
confused plants are likely be misclassified. If we take both
flower and leaf organs into consideration, plant A and plant B
can be correctly identified.

In this paper, we apply the multi-column DCNN model to
combine multiple organs for plant identification, to input more
information to the classifier and to obtain more robust perfor-
mance. Our multi-column DCNN model is flexible for any
number of input organs. This flexibility means that regardless
of the number of organs, the model can cope with it well.

The remainder of this paper is organized as follows. In
Section II, we introduce DCNN and our proposed model in
detail. The experimental results are presented in Section III.
Finally, conclusions are drawn in Section IV.

II. MULTI-COLUMN DCNN FOR MULTI-ORGAN PLANT
IDENTIFICATION

The multi-organ plant identification system contains two key
stages. The first is that we should train separate sub-models for
each type of organ. The second is to combine all single organ’s
models together efficiently. The entire structure of this system
is shown in Fig. 2. Each row in the left part of this figure is an
individual sub-model for a single organ. All seven models are
combined together to train the integrated model. When testing,
multiple organs of an unknown plant, rather than only one
organ, are fed into the multi-column DCNN. Leveraging this
powerful combination, the performance of plant identification
is greatly improved.

A. Single-Organ Model

The identification performance from a single organ has a
direct impact on the identification performance of multiple
organs. Deep convolution neural networks have been proven
to be an effective model for image classification problems[10].
Inspired by its powerful ability to describe image content well
[13], we apply this model for plant identification in this paper.

CNN are feed-forward neural networks. It was first applied
in the hand-written character recognition problem by LeCun
et al. [14]. Deep convolutional neural networks have been de-
veloped in recent years with the rapid development of parallel
computing. DCNNs are an efficient recognition method that
have attracted widespread attention. The original image can be
directly fed into the model. Therefore, this network can avoid
the complicated pre-processing of the image. Convolutional
neural networks make use of the spatial relationship to reduce
the number of parameters. Compared to other feed-forward
neural networks, convolutional neural networks require fewer
parameters. However, many parameters still need to be trained
for deep convolutional neural networks. Therefore, it is still
challenging to train such a network with limited computing
resources. Fortunately, the field of deep learning has achieved
numerous significant improvements in recent years. For exam-
ple, the dropout method proposed by Hinton et al. effectively

Entire

LeafScan

Branch

Fig. 2. The structure of the proposed multi-column deep convolution neural
networks. Single-column networks are first trained. The input of each column
is one type of specific organ. Seven organs are applied here, namely, flower,
stem, fruit, entire, leafscan, leaf, and branch. The single-column networks are
fine-tuned from AlexNet [10]. All models are combined together at the FC8
layer.

avoids the phenomenon of over-fitting by preventing the co-
adaptation of feature detectors [15]. Furthermore, the rectified
linear units (ReLUs) achieve better performance than other
active functions such as tanh [10][16]. Most importantly, the
GPU implementation of deep convolution neural networks
makes the training time as low as approximately 2.5 ms
per image [17]. Due to these aforementioned methods, it
is possible to efficiently train the deep convolutional neural
networks. Based on these methods, deep convolutional neural
networks with millions of parameters, proposed by Krizhevsky
et al., were applied on the ImageNet dataset [10]. This network
contains five convolutional layers and three fully connected
layers. At the end of the network is the softmax layer, which
outputs the probabilities of 1000 classes in the ImageNet
dataset.

The deep convolution neural networks in this paper are
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implemented as in [10]. We fine-tune the network from a pre-
trained model for all organs of plants. The pre-trained models
are trained on a large-scale image dataset [18], which contains
approximately 1.2 million images of 1000 categories. With
these abundant images, the pre-trained model can describe
images well. Then, the pre-trained model is fine-tuned for
plant identification of each organ. As shown in Fig. 2, there
are seven organs used in the final model. Therefore, there are
seven models that are fine-tuned for each of the seven organs.

B. Multiple Organ Combination via Multi-Column DCNN

As shown in Fig. 1, for each taxon of plants, information
provided by a single organ is limited. Representing a taxon
of a plant through multi-organ inputs can somewhat alleviate
this problem. Each input of the model represents one type of
organ of this taxon. Input with multiple organs can allow the
model to obtain more information about this taxon of plants
for identification.

Inspired by [19], [20] and [21], a novel multi-column deep
convolutional neural network is proposed to combine different
inputs of organs together. The architecture of this model is
presented in Fig. 2. As shown in this figure, the models for
different organs are independent in convolutional layers and
the first two fully connected layers. The inputs of each column
are the different organs of the plant. For those organs that did
not appear in a taxon, we set the input of those columns with
zero. The different organs for the initialized input are decided
manually. The architecture of each column is exactly the same
as in [10]. The Fc8 layers of all columns are combined together
with a fully connected layer. The output of the combined fully
connected layer is a softmax layer that outputs the probabilities
of each taxon.

However, after all sub-models are combined together, the
number of parameters in this model is seven times larger than
that in the single column. To implement this model and obtain
better performance, the following tricks are applied in this
model.

1) The weights in Fc8 of the multi-column model is initial-
ized from the weights of the single-column model: The weights
of the single-column model are fine-tuned well from AlexNet
[10]. It is clearly better than randomly initialized weights.

2) Probabilities of each column restrict the combined
weights: The combination of multiple organs is based on the
assumption that most of the organs can provide output with
a high confidence level. However, when more organs are fed
into the model, we cannot ensure that most of the organs can
be output with high-confidence results. It is possible that the
high-confidence outputs will be lost in the majority of low-
confidence outputs. Consequently, the low-confidence outputs
should be restricted. The probability output of each column
can represent not only the probabilities of each taxon but also
the confidence level of this prediction. From this perspective,
the confidence level of the i*" column CL; is simply defined
by the maximum of the probability out 7 of image in the i‘"
column Z;. It can be written as follows:

Fig. 3. The size of the input images of the deep convolutional neural networks
is fixed. Two types of methods to normalize the size of images are shown.
The method on the left is cropping the center square then resizing this patch
to 256 x 256. The method on the right is resizing the image to ensure that
the length of the long edge is 256. Then, the image is placed in the center
of 256 x 256 patch. The empty area of the image is filled by pixels whose
values are the same as in the long edge.

CL; = max(P(Z;)) (1)
Prior to combining, the output of Fc7 in the i*" column
whose confidence level CL; is less than a pre-defined threshold
0 is multiplied by CL;:

oFer _ {QW if CL; > 0 o
! OF<T xcL, ifCcL; <6

3) Crop center image for organs except the LeafScan:
The size of the input images for deep convolutional neural
networks is fixed. All images are cropped to 256 x 256.
However, as shown in Fig. 3, the crop of “LeafScan” images
will lose most parts of the “LeafScan” images. To overcome
this problem, rather than cropping the “LeafScan” images, we
resize the image to ensure that the long edge equals 256. The
board is filled with the same pixels as these on the long edge.

4) Oversample image when identifying: The input images
are predicted from crops of the middle, top left, top right,
bottom left and bottom right. The mirrored image is also
cropped and predicted. The final result is the average of these
ten predictions.

Using these tricks, the model can be flexible for various
types of inputs. Therefore, this model can achieve better
performance and is more robust.

III. EXPERIMENT

This section verifies the performance of our multi-column
deep convolutional neural networks for multi-organ plant i-
dentification.
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Statics of Observations

= Only One Image in Observation
= At Least Two Images But Only One Organ in Observation
= At Least Two Organ in Observation

Fig. 4. Statistics of observations. The total number of observations is 8163.
However, there are only 12.5% observations that have at least 2 organs.

A. Dataset

Our experiment is conducted on the plant task of the Life-
CLEF2014 dataset:PlantCLEF [22]. This dataset is different
from the previous plant identification datasets. Queries in this
dataset are defined as plant observations rather than single
images. The plant observations are a set of 1 to 5 images
from the same individual plant observed by the same person
on the same day. Some examples of observations are presented
in Fig. 5. Each image in an observation belongs to a single
view type (flower, fruit, branch, leaf, entire plant, stem, or leaf
scan). This dataset contains 47815 images for training (6356
images of “Entire”, 3753 of “Fruit”, 1987 of “Branch”, 13164
of “Flower”, 3466 of “Stem”, 7754 of “Leaf™, and 11335 scans
and scan-like pictures of leaf) and 8163 plant-observation-
queries with 13146 images (731 images of “Branch”, 2058 of
“Leaf”, 4559 of “Flower”, 2983 of “Entire”, 1184 of “Fruit”,
935 of “Stem” and 696 scans and scan-like pictures of leaf) for
testing. Fig. 4 shows the statistics of observations. As shown
in this figure, the number of observations whose contents have
at least two organs is quite limited. Therefore, we pair-wise
combine the organs rather than combining all organs together.

B. Performance Metrics

In addition to the basic top-1 and top-5 identification accu-
racy metrics, to compare our model with other models using
this dataset, a new score metric is used in the experiments.
Each plant observation test will be given a score s, for the
pt" plant observed by the u** user. The score Su,p 18 equal
to the inverse of the rank of the correct species. An average
score S will then be computed on all tested individual plants.
Because the task wants to evaluate the ability of a system to
provide correct answers to all users, the score is the mean of
the average classification rate per author. Finally, the primary
metric is defined as the following average classification score
Sol

1 U 1 P,
So =15 ; P—u;sw 3)

0-19294 [Bellis perennis L.]

Fig. 5. Some examples of observations.

where P, is the number of individual plants observed by the
u!™ user and U is the number of users who have at least one
image in the test data.

The score averaged over all images rather than over all
observations is defined as follows:

I h 1o 1 W
S]:ﬁu;l?u;m;su,p,n (4)

where N, , is the number of pictures taken from the p‘" plant
observed by the u" user and s, ;. is the score equal to the
inverse of the rank of the correct species for the n'* picture
taken from the p*" plant observed by the u*" user.

C. Comparison on Single-organ and Multi-organ Models

To evaluate how much progress is made by multi-organ
input, we compare the results of multiple organs with the
results of a single organ. These results are summarized in
Table I and Table II.

The “MC” result is the multi-column deep convolutional
neural networks proposed in this paper. The “AVGP” result is
simply calculated as the mean of the query pair’s probabilities.
Compared to the results of a single organ, the results show
that irrespective of the type of method applied to combine the
model, most of the results of multiple organs are far better than
the results of a single organ. Moreover, the results of the multi-
column deep convolutional neural networks proposed in this
paper achieve the best performance. However, the results show
that some combinations cause the performance to become
worse. For example, the performance of the combination of
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TABLE I
IDENTIFICATION ACCURACY OF SINGLE ORGAN
Organ Top 1 (%) | Top 5 (%)

LeafScan (LS) 64.4 86.1
Flower (F1) 61.0 81.0
Fruit (Fr) 35.6 59.0
Leaf (Le) 29.0 52.0
Stem (St) 29.7 44.5
Branch (Br) 16.8 35.8
Entire (En) 29.2 51.0

TABLE 11

IDENTIFICATION ACCURACY OF TWO ORGANS

Accuracy (%) Fl Fr Le St Br En

MC TL | 793 | 76.7 | 71.4 | 66.3 | 569 | 51.6

LS TS5 | 91.7 | 90.6 | 90.1 | 85.0 | 81.0 | 71.7

AVGP T1 | 734 | 659 | 643 | 61.7 | 56.0 | 46.5

TS5 | 89.4 | 88.2 | 859 | 81.9 | 79.3 | 68.8

MC Ti — 75.0 | 742 | 642 | 64.1 | 73.7

fl T5 — 91.1 | 90.5 | 82.7 | 84.0 | 90.8

AVGP Tl — 66.2 | 647 | 60.2 | 59.2 | 664

TS — 85.5 | 835 | 794 | 79.2 | 84.1

MC Tl — — 643 | 51.4 | 50.0 | 50.8

Fr TS — — 845 | 739 | 74.1 | 743

AVGP Tl — — 509 | 455 | 41.2 | 40.6

TS — — 76.3 | 68.0 | 64.8 | 64.1

MC Tl — — — 51.0 | 39.8 | 46.7

Le TS — — — 73.7 | 67.5 | 70.8

AVGP Tl — — — 436 | 34.1 | 343

T5 — — — 66.5 | 594 | 59.7

MC Tl — — — — 31.1 | 405

St T5 — — — — 52.7 | 62.3

AVGP Tl — — — — 29.1 | 359

T5 — — — — 46.3 | 57.3

MC T T T T T

Br Tl — - - - - 28.5
AVGP BN S A A — i

T5 — — — — — 50.7

“Entire” and “LeafScan” is lower than the performance of
“LeafScan”. To explain this phenomenon, we counted the test-
ing dataset. We found that the reason for this phenomenon was
that there were only few taxa that had the organ “LeafScan”.
Therefore, the identification accuracy does not benefit from
the combination.

D. Comparison of Our Method with State-of-the-art

As previously mentioned, to compare our results with other
state-of-the-art methods, we apply the score matrices on the
top-20 results. Then, we compare the score to the best results
in the PlantCLEF2014 challenge task.

1) Compared to single organ: For the results shown
in Table III, the “FT-CNN” is our proposed method. The
“SIFT+FV+CNN” is a model proposed by the best result in

TABLE III
IDENTIFICATION SCORE IN SINGLE ORGAN COMPARISON
BETWEEN BASELINES AND OUR MODELS.

Organ CNN [23] SIFT+FV+CNN [23] | FT-CNN (ours)
LeafScan (LS) 0.278 0.640 0.641
Flower (F1) 0.389 0.585 0.648
Fruit (Fr) 0.161 0.339 0.472
Leaf (Le) 0.103 0.318 0.329
Stem (St) 0.138 0.269 0.224
Branch (Br) 0.103 0.292 0.235
Entire (En) 0.193 0.333 0.394
Average 0.263 0.456 0.488
TABLE IV

IDENTIFICATION SCORE IN OBSERVATIONS COMPARISON
BETWEEN BASELINES AND OUR MODELS.

Method Score

CNN [23] 0.271
SIFT+FV+CNN [23] 0.471
FT-CNN+AVGP (ours) 0.503
FT-CNN+MC (ours) 0.506
FT-CNN+MC+RLCL (ours) | 0.508

the PlantCLEF2014 task [23], which uses dense SIFT as the
feature descriptor. Feature representation uses the GMM-based
Fisher vector. A newly trained CNN feature is added to the
feature vector. The “CNN” is the results of the newly trained
CNN. The results show that our method with a single organ
is better than the best result in the PlantCLEF2014 task.

2) Comparison of observations: Table IV presents a com-
parison of our and the best results in the PlantCLEF2014 task
[23]. The “FT-CNN+AVGP” is the performance of the average
probability of observations output. The “FT-CNN+MC” is the
performance of the multi-column deep convolutional neural
networks proposed by us. The “FT-CNN+MC+RLCL” is the
performance of our model, and weights are added to each col-
umn according to the confidence level of the output. Although
the growth rate is not very large due to the observation data
with multiple organs being seldom accounted for, the result
shows that our model with added weights is the best. As shown
in Fig. 6, the result of leaf and flower of this taxon is wrong in
top-1; however, when the input observation consists of these
two images to our proposed model, the result is correct. This
example demonstrates that plant identification with multiple
organs is powerful for providing the correct identification even
when both identifications of a single input are incorrect.

IV. CONCLUSION

In this paper, the limitations of deep convolutional neural
networks in plant identification and the benefits of multi-
column deep convolutional neural networks are analyzed. Sub-
sequently, an effective automatic plant identification algorithm
with multiple organs by using multi-column deep convolution-
al neural networks is proposed. The single model is fine-tuned
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Silene latifolia Poir.

Saponaria officinalis L.

Centaurea jacea L.
Convolvulus arvensis L.
Silene latifolia Poir.

Leucanthemum vulgare Lam.

Silene latifolia Poir.

Lonicera xylosteum L.
Pittosporum tobira (Thunb.) W.T.Ait|

Fig. 6. Comparison of single-organ classification and multi-column classifi-
cation. There are two single-organ tests in the first row and the second row.
One multi-organ test is presented in the third row. The first label in each line
is the ground truth of this image. The remainder of the labels are the five
labels predicted with the highest probability. The bar is purple if the label is
the same as the ground truth.

from the pre-trained model. The experiments conducted on the
plant dataset that consists of user’s observation queries in the
real world have demonstrated the superiority of our proposed
model.

In the future, we will continue exploring the automatic
plant identification problem with different methods. The per-
formance of some single organs is quite lower than that of
other organs, which limits the overall performance of multi-
organ identification. Therefore, it is necessary to explore
useful methods to improve the performance of organs whose
performance is low. Furthermore, AlexNet can be replaced by
some more powerful models, e.g., GoogleNet [24] and VGG-
Net [25]. We believe that this automatic plant identification
system will bring more reliable applications.
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